Synthesis of some μ-hydroxo-, phenoxoand O, O-acetylacetonato-arylgold (III) complexes. Crystal structure of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mu-\mathrm{OH})\right]_{2} \cdot 2 \mathrm{Et}_{2} \mathrm{O}$
 José Vicente ${ }^{\text {a, * }}$, María Dolores Bermúdez ${ }^{\text {b, * }}$, Francisco J. Carrión ${ }^{\text {b }}$, Peter G. Jones ${ }^{\text {c }}$
 ${ }^{\text {a }}$ Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apdo 4021, Murcia 30071, Spain
 ${ }^{\text {b }}$ Grupo de Ciencia de Materiales e Ingeniería Metalúrgica, Departamento de Ingeniería de Materiales y Fabricación, Escuela Politécnica Superior, Universidad de Murcia, 30203 Cartagena, Spain
 ${ }^{\text {c }}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Received 29 March 1995

Abstract

A new synthesis of cis- $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2} \mathrm{Cl}_{2}\right.$] (1) is reported, involving the reaction of $\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]$ with $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{AuCl}_{4}\right]$ in the presence of $\mathrm{Me}_{4} \mathrm{NCl}$. Reaction of 1 with NaOPh or with Tlacac (acac = acetylacetonate) in the presence of NaClO_{4} yields $\mathrm{Na}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{OPh})_{2}\right]$ (2) or cis-[$\left.\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right]$ (3), respectively. Complex 3 reacts with PPh_{3} to give trans- $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{C}-\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ (4). Treatment of 2 in acetone with NaOH gives $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mu-\mathrm{OH})\right]_{2}(5)$, which is also formed when a solution of $2 \mathrm{in} \mathrm{CHCl}_{3}$ /hexane is exposed to water. The crystal structure of $5 \cdot 2 \mathrm{Et}_{2} \mathrm{O}$ shows that it is a centrosymmetric dimer with two hydroxo groups bridging two $\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)$ moieties. The features of the structure include short $\mathrm{Au}-\mathrm{C}$ bond distances (1.992(5) $\AA, 1.995(5) \AA$) and hydrogen bonding between the bridging OH groups and diethyl ether molecules.

Keywords: Gold; Crystal structure; Acetylacetonato μ-hydroxo complexes

1. Introduction

Few organogold(III) complexes with oxoanionic ligands are known and many of them are unstable or moisture sensitive [1]. Thus, $\left[\mathrm{AuMe}_{2}(\mathrm{OH})\right]_{4}$ detonates when dry just by touching [2], and the complexes [$\mathrm{AuMe}_{2}(\mathrm{X}) \mathrm{L}$], where $\mathrm{X}=\mathrm{ClO}_{4}, \mathrm{CF}_{3} \mathrm{SO}_{3}, p-\mathrm{MeC}_{6} \mathrm{H}_{4}-$ SO_{3} or NO_{3} and $\mathrm{L}=\mathrm{PPh}_{3}$, decompose at room temperature to give ethane and $[\mathrm{Au}(\mathrm{X}) \mathrm{L}]$ [3]. [$\mathrm{AuMe}_{2}{ }^{-}$ $\left.\left(\mathrm{OSiMe}_{3}\right)\right]_{2}$ is thermally stable but sensitive to moisture [4]. As far as we are aware, only three 0,0-acetylace-tonato- complexes are known [5], and no HO- or ROarylgold(III) complexes. This paper reports the synthesis of new O, O-acetylacetonato- and the first HO- and RO-arylgold(III) complexes, advantage being taken of the high stability of the $\mathrm{C}-\mathrm{Au}$ bonds in orthonitrophenyl gold complexes [6].

[^0]
2. Results and discussion

The synthesis of cis-Me ${ }_{4} \mathrm{~N}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2} \mathrm{Cl}_{2}\right]$ (1) has been achieved by transmetallation ($1: 1$, refluxing 18 h in acetone) [7]:

$$
\begin{gathered}
2\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}\right]+\left[\mathrm{AuCl}_{4}\right]^{-} \\
\rightarrow\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2} \mathrm{Cl}_{2}\right]^{-} \\
\quad+2\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]
\end{gathered}
$$

However, because $\mathrm{Me}_{4} \mathrm{NCl}$ symmetrizes the by-product $\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]$,

$$
\begin{aligned}
& 2\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]+\mathrm{Cl}^{-} \\
& \quad \rightarrow\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}\right]+\left[\mathrm{HgCl}_{3}\right]^{-}
\end{aligned}
$$

it is possible to improve the yield of 1 , with respect to the nitrophenyl group, by carrying out the reaction of $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{AuCl}_{4}\right]$ with $\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]$ in the presence of $\mathrm{Me}_{4} \mathrm{NCl}$ (1:2:2, EtOH, refluxing 5 h , see Scheme
$\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{AuCl}_{4}\right]+2\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]+2 \mathrm{Me}_{4} \mathrm{NCl}$

(1)

(3)

Scheme 1.
1). We have previously used a similar method to prepare $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]^{-}$[8].

Reactions of 1 with $\mathrm{NaOR}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ gave metallic gold even at low temperature and under an inert atmosphere. However, 1 reacts with NaOPh (1:3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature) to give $\mathrm{Na}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right.\right.$ $\left.-2)_{2}(\mathrm{OPh})_{2}\right]$ (2). As far as we are aware, 2 is the first arylgold(III) species containing an RO^{-}ligand. Some aryl- or alkyl-oxodimethylgold(III) complexes (Au$\left.\mathrm{Me}_{2}(\mathrm{OR}) \mathrm{PPh}_{3}\right)\left(\mathrm{R}=\mathrm{Ph}\right.$, tolyl, $\left.\mathrm{CH}_{2} \mathrm{CF}_{3}, \mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\right)$ have recently been reported [9]. The complex $\left[\mathrm{AuMe}_{2}(\mathrm{OH})\right]_{4}$ dissolves in aqueous NaOH to give a solution which is believed to contain $\mathrm{Na}\left[\mathrm{AuMe}_{2}(\mathrm{OH})_{2}\right]$ [10].

Tlacac (acac $=$ acetylacetonate) reacts with 1 , in the presence of NaClO_{4}, (1:1, acetone) to give cis$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right]$ (3). If the reaction is carried out in the absence of NaClO_{4}, a mixture of 1 and 3 is obtained, probably because formation of the partially soluble $\mathrm{Me}_{4} \mathrm{NCl}$ leads to establishment of the equilibrium $\mathbf{3}+2 \mathrm{Cl}^{-} \leftrightarrow \mathbf{1}+\mathrm{acac}^{-}$. When NaClO_{4} is present formation of the insoluble NaCl and $\mathrm{Me}_{4} \mathrm{NClO}_{4}$ displaces the equilibrium towards 3 . As far as we are aware, only two other ($\mathrm{O}, \mathrm{O}-\mathrm{acac}$)diarylgold(III) complexes $\left(\operatorname{cis}-\left[\mathrm{Au}(\mathrm{R})_{2}(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right)\left(\mathrm{R}=2,2^{\prime}\right.\right.$-biphenyl [5a], $\mathrm{C}_{6} \mathrm{~F}_{5}$ [5b]) and one cationic ($\mathrm{O}, \mathrm{O}-\mathrm{acac}$)monoarylgold(III) complex ($\left[\mathrm{Au}\left(\mathrm{C}, \mathrm{N}^{\prime}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}-2\right)(\mathrm{O}, \mathrm{O}-\right.$ $\mathrm{acac}) \mathrm{ClO}_{4}$ [5c]) have been described. The complex [$\mathrm{AuMe}_{2}(\mathrm{O}, \mathrm{O}-\mathrm{acac})$] was reported long ago [11]. Addition of PPh_{3} to 3 (1:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature)
gives trans-[$\left.\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{C}-\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right](4)$ in which the acac ligand is C -bonded rather than O, O bonded and the cis geometry has changed to trans (as indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy, as described below). The reaction of $\left[\mathrm{AuMe}_{2}(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right]$ with tertiary phosphines results in formation of an equilibrium with cis-[$\left.\mathrm{AuMe}_{2}(\mathrm{C}-\mathrm{acac})\left(\mathrm{PR}_{3}\right)\right]$. Only in the case of $\mathrm{PMe}_{2} \mathrm{Ph}$ could the C -acac complex be isolated [12]. Activation of C-H bonds in ketones (MeCOR) takes place with some (C -acac)(2-phenylazophenyl)gold(III) derivatives to give ketonyl complexes [5 c]. The fact that $\mathbf{3}$ and $\mathbf{4}$ are stable in acetone is in accordance with the proposed pathway for this $\mathrm{C}-\mathrm{H}$ activation process [5c].

Attempts were made to grow single crystals of 2 by the liquid diffusion method using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane. The only suitable crystals obtained for X-ray diffraction turned out to be of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mu-\mathrm{OH})\right]_{2}$. $2 \mathrm{Et}_{2} \mathrm{O}(5)$, presumably as a result of reaction with traces of water. This hydroxo-bridged complex was also made, although in low yield because of partial reduction to metallic gold, by reaction of $\mathbf{1}$ with NaOH . The homologous methylgold(III) derivative is a tetramer $\left[\mathrm{AuMe}_{2}(\mu-\mathrm{OH})\right]_{4}$ [2] whereas 1 -hydroxo-2,3,4,5-tetraphenylauracyclopentadiene is, like complex 5 , a dimer [13]. When dilute aqueous HCl was added to 5 , reaction took place with decomposition and no pure chloro complex was isolated.

Reactions between complex 2 and various protic acids did not lead to new complexes. Thus, 2 was stirred in acetone in an attempt to obtain new acetonylgold(III) complexes by $\mathrm{C}-\mathrm{H}$ activation [5c], but no reaction was observed. Although some reaction took place with phenylacetylene in solution, as indicated by a change in colour from colourless to yellow, the starting complex was recovered unchanged after partial removal of the solvent and addition of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{n}$-hexane. Equilibrium reactions have previously been described between phenoxogold(III) complexes, cis-[AuMe $\left.{ }_{2}(\mathrm{OPh})\left(\mathrm{PPh}_{3}\right)\right]$, and $\mathrm{RH}=$ methylcyanoacetate, malononitrile or phenylacetylene [9]. However, while the first gave a mixture of the starting complex and cis-[$\left.\mathrm{AuMe}_{2}(\mathrm{R})\left(\mathrm{PPh}_{3}\right)\right]$, the latter two gave the corresponding $\mathrm{R}-\mathrm{Au}(\mathrm{III})$ complexes. Complexes 3 and $\mathbf{4}$ were also recovered unchanged after treatment with phenylacetylene. This is in contrast with the observed behaviour of acetylacetonatogold(I) complexes towards alkynes [14].

2.1. Spectroscopic properties and structure of the com-

 plexes.
2.1.1. IR spectra

The phenoxo derivative 2 shows strong bands in the region $1250-1300 \mathrm{~cm}^{-1}$ assignable to $\nu(\mathrm{C}-\mathrm{O})$ [9], and strong bands at 690 and $760 \mathrm{~cm}^{-1}$, typical of monosub-
stituted phenyl groups (PhO). This last set of bands is not observed for the hydroxo species 5 . The acac complex 3 shows $\nu(\mathrm{CO})$ at 1550 and $1570 \mathrm{~cm}^{-1}$, while the phosphine adduct 4 shows broad bands at 1650 and $1675 \mathrm{~cm}^{-1}$ as expected for chelating 0,O-acac and terminal C -acac groups, respectively [5c]. All the complexes show bands at $1330-1340 \mathrm{~cm}^{-1}$ and ca. 1510 cm^{-1}, which have been shown to correspond to $\nu_{\text {sym }}\left(\mathrm{NO}_{2}\right)$ and to $\nu_{\text {asym }}\left(\mathrm{NO}_{2}\right)$, respectively, when the nitrophenyl group is not coordinated to the metal centre [15].

2.1.2. NMR spectra

The ${ }^{1} \mathrm{H}$ NMR spectrum of the acac complex 3 shows a singlet resonance at 2.0 ppm for methyl groups and at 5.5 ppm for the methynic proton. This resonance appears in 4 as a doublet at $4.2 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{HP}}=12 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR of $\mathbf{4}$ shows only one resonance for the C attached to the nitro group (151.8 ppm) and 12 resonances in the range $122-135 \mathrm{ppm}$. The methyne carbon gives a doublet at 67.62 ppm with ${ }^{2} \mathrm{~J}_{\mathrm{CP}}=86 \mathrm{~Hz}$. These data indicate a trans geometry for 4 . The antisymbiotic effect has proved useful in understanding some related changes in geometry in arylpalladium(II) complexes [16]. In terms of this effect, an aryl and a phosphine ligand should have a destabilizing effect on each other when attached to class b metal ions such as palladium(II). No resonance assignable to μ-hydroxo protons was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 . The same feature has been reported for other bridging hydroxo complexes [17].

2.2. Crystal structure of complex 5

The crystal structure of $\mathbf{5}$ is the first for a nitroarylgold(III) complex (see Fig. 1). The complex displays crystallographic inversion symmetry and the central $\mathrm{Au}_{2} \mathrm{O}_{2}$ ring is thus exactly planar; the transannular $\mathrm{Au} \ldots \mathrm{Au}$ distance is $3.150(1) \AA$. The coordination at

Fig. 1. The structure of compound 5 in the crystal. Radii are arbitrary.
gold is, as expected, planar, with a mean deviation of $0.06 \AA$. The $\mathrm{Au}-\mathrm{C}$ bond distances (1.992(5) \AA, 1.995(5) \AA) are among the shortest $\mathrm{Au}(\mathrm{III})-\mathrm{C}$ bond distances so far reported [18]. The only two other crystal structures reported of hydroxoorganogold(III) complexes ($\left[\mathrm{AuMe}_{2}(\mathrm{OH})\right]_{4}[19]$ and 1-hydroxo-2,3,4,5-tetraphenylauracyclopentadiene [13b]) were not of sufficient accuracy to allow comparison with the data for complex 5. The $\mathrm{Au}-\mathrm{O}$ distances $(2.073(4) \AA$, 2.075(4) \AA) in 5 are longer than in $\mathrm{Sr}\left[\mathrm{Au}(\mathrm{OH})_{4}\right]_{2}(1.980(8) \AA$) [20]. This difference can partly be attributed to the change from a bridging to a terminal OH ligand. Thus, in $\left[\mathrm{Au}_{2} \mathrm{O}_{6}\right]^{6-}$ the $\mathrm{Au}-\mathrm{O}$ distances are $2.17 \AA$ and $2.12 \AA$, respectively [21]. Additionally, the greater trans influence of an aryl than of an OH ligand must be taken into account.

Each nitro group is inclined to its own aryl ring (N1 by 35°, N 2 by 20°) and in an anti disposition with respect to the hydrogen of the neighbouring cis- OH group. The OH hydrogen atoms are (necessarily) mutually trans and both are hydrogen bonded to a diethyl ether molecule ($\mathrm{O} \ldots \mathrm{O} 2.700(5) \AA, \mathrm{O}-\mathrm{H} \ldots \mathrm{O} 178^{\circ}$).

The presence of the nitro group causes significant widening of the corresponding $\mathrm{C}-\mathrm{C}\left(\mathrm{NO}_{2}\right)-\mathrm{C}$ angle $\left(123.0(5)^{\circ}, 123.9(5)^{\circ}\right)$ with little change in the bond distances of the aryl ring (1.375(8)-1.404(8) \AA). The opposite effect is observed for the $\mathrm{C}-\mathrm{C}(\mathrm{Au})-\mathrm{C}$ bond angle $\left(117.0(5)^{\circ}, 115.6(5)^{\circ}\right)$. Both facts have been attributed to the operation of the -I rather than the -M effect of the nitro group [22]. The $\mathrm{C}-\mathrm{N}$ (1.477(7) \AA, $1.498(7) \AA)$ and $\mathrm{N}-\mathrm{O}(1.211(6)-1.230(7) \AA)$ bond distances are similar to those previously reported [22]. The short intramolecular $\mathrm{ONO} \ldots \mathrm{Au}$ distances ($\mathrm{Au} \ldots \mathrm{O} 2$ $2.866 \AA, \mathrm{Au} \ldots \mathrm{O} 4.845 \AA$) correspond to weak axial interactions.

3. Experimental section

The compound $\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right]$ was prepared as previously described [23]. Reactions were carried out at room temperature and NMR spectra were recorded on a Bruker AC-200 or a Varian XL-300 spectrometer, and referenced to internal $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or external $\mathrm{H}_{3} \mathrm{PO}_{4}$ $\left({ }^{31} \mathrm{P}\right)$ unless otherwise stated.

3.1. $\left.\mathrm{Cis}^{-M e}{ }_{4} \mathrm{NLAu}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2} \mathrm{Cl}_{2}\right]$ (1)

To a yellow solution of $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{AuCl}_{4}\right]$ ($530 \mathrm{mg}, 1.30$ mmol) in EtOH ($50 \mathrm{~cm}^{3}$) were added solid $\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{Cl}\right](919 \mathrm{mg}, 2.60 \mathrm{mmol})$ and $\mathrm{Me}_{4} \mathrm{NCl}(2.64 \mathrm{mg}, 2.70 \mathrm{mmol})$. The mixture was stirred under reflux until complete (ca. 5 h). The solvent was removed decoloration and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The extract was filtered through anhydrous MgSO_{4} and the filtrate evaporated to ca. 1 cm^{3}. Addition of $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ afforded a white
precipitate which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{Et}_{2} \mathrm{O}$ ($629 \mathrm{mg}, 1.10 \mathrm{mmol}$) to give 1 [7]. Yield, 84%; ${ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}$ (DMSO): $\delta 3.10\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{4} \mathrm{~N}^{+}\right.$), $7.22(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), $7.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 7.87 (m, 2H, H3) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO): $\delta 150.97$ (C2), 125.32, 126.27, 133.74, 135.12 (C1, C3-C6, two nuclei must be accidentally isochronous), 54.58 $\left(\mathrm{Me}_{4} \mathrm{~N}^{+}\right)$, ppm.

3.2. $\mathrm{Na}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{OPh})_{2}\right]$

Solid 1 ($189 \mathrm{mg}, 0.33 \mathrm{mmol}$) was added to a suspension of $\mathrm{NaOPh}(170 \mathrm{mg}, 0.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 cm^{3}), and the mixture stirred for 6 h . The solution was then filtered through anhydrous MgSO_{4} and the filtrate evaporated to ca. $1 \mathrm{~cm}^{3}$. Addition of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{n}$-hexane ($1: 1,10 \mathrm{~cm}^{3}$) produced a pale yellow precipitate which was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum. Yield, 64%; M.p. $100^{\circ} \mathrm{C}$ (decomp.); $\Lambda_{\mathrm{M}}=87$ $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\left(5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}\right) ;{ }^{1} \mathrm{H}$ NMR: δ $6.44(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~m}, 4 \mathrm{H}), 7.55\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}+\right.$ PhO), 7.85 (m, 2H, H3) ppm. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{AuN}_{2} \mathrm{NaO}_{6}$: C, 44.3; H, 2.8; N, 4.3; $\mathrm{Au}, 30.3 \%$. Found: C, 43.9; H, 3.0; N, 4.1; Au, 30.7\%.

3.3. $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right]$ (3)

To an acetone solution ($50 \mathrm{~cm}^{3}$) of 1 ($56 \mathrm{mg}, 0.10$ mmol) were added solid $\mathrm{Tl}(\mathrm{acac})$ (acac $=$

Table 1
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $5 . U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

	x	y	z	$U(\mathrm{eq})$
Au	$5185.7(1)$	$5783.4(1)$	$5619.9(1)$	$15.1(1)$
$\mathrm{C}(11)$	$4935(4)$	$7109(4)$	$5626(3)$	$17.0(12)$
$\mathrm{C}(12)$	$4071(4)$	$7437(4)$	$5503(4)$	$21.3(13)$
$\mathrm{C}(13)$	$3882(5)$	$8349(4)$	$5413(3)$	$29(2)$
$\mathrm{C}(14)$	$4583(5)$	$8959(4)$	$5455(4)$	$33(2)$
$\mathrm{C}(15)$	$5461(4)$	$8654(4)$	$5572(4)$	$30.0(15)$
$\mathrm{C}(16)$	$5637(4)$	$7746(4)$	$5651(4)$	$22.2(12)$
$\mathrm{N}(1)$	$3293(3)$	$6812(4)$	$5499(3)$	$28.0(13)$
$\mathrm{O}(1)$	$2650(3)$	$7001(4)$	$5071(3)$	$44.3(13)$
$\mathrm{O}(2)$	$3321(3)$	$6156(3)$	$5945(3)$	$31.7(11)$
$\mathrm{C}(21)$	$5695(4)$	$5873(4)$	$6726(3)$	$17.5(12)$
$\mathrm{C}(22)$	$6590(4)$	$5774(4)$	$6930(3)$	$21.9(12)$
$\mathrm{C}(23)$	$6905(4)$	$5780(5)$	$7710(4)$	$30.5(15)$
$\mathrm{C}(24)$	$6313(4)$	$5928(5)$	$8327(4)$	$34(2)$
$\mathrm{C}(25)$	$5398(4)$	$6031(4)$	$8156(4)$	$27(2)$
$\mathrm{C}(26)$	$5101(4)$	$6010(4)$	$7370(3)$	$24.7(14)$
$\mathrm{N}(2)$	$7281(3)$	$5622(4)$	$6286(3)$	$30.9(14)$
$\mathrm{O}(3)$	$8010(3)$	$5295(4)$	$6492(3)$	$60(2)$
$\mathrm{O}(4)$	$7107(3)$	$5846(3)$	$5603(3)$	$42.5(12)$
$\mathrm{O}(5)$	$4558(3)$	$5587(3)$	$4519(2)$	$17.2(9)$
$\mathrm{C}(91)$	$4349(5)$	$6695(5)$	$2671(4)$	$38(2)$
$\mathrm{C}(92)$	$3519(5)$	$7018(5)$	$3095(5)$	$50(2)$
$\mathrm{C}(93)$	$5912(5)$	$6417(5)$	$2885(4)$	$39(2)$
$\mathrm{C}(94)$	$6598(5)$	$6298(6)$	$3544(5)$	$50(2)$
$\mathrm{O}(99)$	$5054(3)$	$6613(3)$	$3250(3)$	$30.3(11)$

Table 2
Selected bond lengths (\AA) and angles (deg.) for 5

$\mathrm{Au}-\mathrm{C}(21)$	$1.992(5)$	$\mathrm{C}(22)-\mathrm{N}(2)$	$1.498(7)$
$\mathrm{Au}-\mathrm{C}(11)$	$1.995(5)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.367(9)$
$\mathrm{Au}-\mathrm{O}(5)$	$2.073(4)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.392(8)$
$\mathrm{Au}-\mathrm{O}(5) \# 1$	$2.075(4)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.381(9)$
$\mathrm{C}(12)-\mathrm{N}(1)$	$1.477(7)$	$\mathrm{O}(5) \ldots \mathrm{O}(99)$	$2.700(7)$
$\mathrm{N}(1)-\mathrm{O}(1)$	$1.221(6)$	$\mathrm{Au} \ldots \mathrm{Au} \# 1$	$3.150(1)$
$\mathrm{N}(1)-\mathrm{O}(2)$	$1.222(6)$		
$\mathrm{C}(21)-\mathrm{Au}-\mathrm{C}(11)$	$90.0(2)$	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$	$124.2(6)$
$\mathrm{C}(11)-\mathrm{Au}-\mathrm{O}(5)$	$173.8(2)$	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(12)$	$117.9(5)$
$\mathrm{C}(11)-\mathrm{Au}-\mathrm{O}(5)$	$93.3(2)$	$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{C}(12)$	$117.9(5)$
$\mathrm{C}(21)-\mathrm{Au}-\mathrm{O}(5) \# 1$	$95.7(2)$	$\mathrm{O}(4)-\mathrm{N}(2)-\mathrm{O}(3)$	$123.7(5)$
$\mathrm{C}(11)-\mathrm{Au}-\mathrm{O}(5) \# 1$	$173.9(2)$	$\mathrm{O}(4)-\mathrm{N}(2)-\mathrm{C}(22)$	$118.9(5)$
$\mathrm{O}(5)-\mathrm{Au}-\mathrm{O}(5) \# 1$	$81.2(2)$	$\mathrm{O}(3)-\mathrm{N}(2)-\mathrm{C}(22)$	$117.3(5)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$117.0(5)$	$\mathrm{Au}-\mathrm{O}(5)-\mathrm{Au} \mathrm{\# 1}$	$98.8(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$123.0(5)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$118.6(6)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.0(6)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$120.5(6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$120.8(6)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	$115.6(5)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$123.9(5)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$119.3(6)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$119.3(6)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.0(6)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$121.9(6)$		

Symmetry transformation used to generate equivalent atoms: \#1; $-x+1,-y+1,-z+1$.
acetylacetonate) ($29.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) and NaClO_{4} ($13.2 \mathrm{mg}, 0.09 \mathrm{mmol}$). The mixture was stirred for 7 h and the solvent was then removed. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 5 \mathrm{~cm}^{3}\right)$ and the solid filtered through anhydrous MgSO_{4}. Evaporation of the filtrate to a volume of ca. $1 \mathrm{~cm}^{3}$ and addition of $\mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~cm}^{3}$) gave a white precipitate ($40 \mathrm{mg}, 0.07 \mathrm{mmol}$) which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$. Yield, 75%; M.p., $205^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR: $\delta 2.00$ (s, 6 H , Me), 5.47 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), $7.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5$), 7.52 (m, $2 \mathrm{H}, \mathrm{H} 6$) 8.00 (m, 2H, H3) ppm. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{AuN}_{2} \mathrm{O}_{6}: \mathrm{C}, 37.8 ; \mathrm{H}, 2.8 ; \mathrm{N}, 5.2 ; \mathrm{Au}, 36.5 \%$. Found: C, 37.6; H, 2.4; N, 5.1; Au, 36.8%.

3.4. $\operatorname{Trans}-\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mathrm{C}-\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$

Solid $\mathrm{PPh}_{3}(26 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($30 \mathrm{~cm}^{3}$) of $\mathbf{3}(53 \mathrm{mg}, 0.10 \mathrm{mmol})$ and the mixture stirred for 3 h . The solvent was evaporated to a volume of ca. $1 \mathrm{~cm}^{3}$ and $\mathrm{Et}_{2} \mathrm{O} / \mathrm{n}$-hexane ($1: 1,10$ cm^{3}) added to give a pale yellow precipitate (68 mg , 0.09 mmol). Yield, 89%; M.p., $165^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: δ $2.00(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 4.23\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=12 \mathrm{~Hz}\right.$], $7.28-7.77\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{PPh}_{3}\right.$), 8.40 [d, $2 \mathrm{H}, \mathrm{H} 3$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right] \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR, $\delta 24.93 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR, $\delta 206.00$ (CO), 151.87 (C2), $134.38,134.12,133.90$, $132.59,131.84,131.79,130.99,129.25,128.97,128.75$, 126.34, 122.97 (C1, C3-C6, Ph), 67.62 (CH), 30.62 (Me) ppm. Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{AuN}_{2} \mathrm{O}_{6} \mathrm{P}$: C, 52.4; H, 3.8; N, 3.5; Au, 24.5\%. Found: C, 52.4; H, 3.9; N, 3.2; Au, 24.1%.
3.5. $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)_{2}(\mu-\mathrm{OH})_{2}\right]_{2}$

Solid $\mathrm{NaOH}(31.2 \mathrm{mg}, 0.78 \mathrm{mmol})$ was added to an acetone solution ($25 \mathrm{~cm}^{3}$) of $1(150 \mathrm{mg}, 0.26 \mathrm{mmol})$
and the suspension was stirred for 15 h , during which decomposition to metallic gold was observed. Evaporation of the solvent, extraction of the residue with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtration of the extract through Celite gave a yellow solution which was concentrated to a volume of ca. 1 cm^{3}. Addition of n -hexane ($20 \mathrm{~cm}^{3}$) gave a pale yellow precipitate which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$ hexane. Yield, 35%; M.p., $210^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR: δ 7.9-6.4 (m, aryl) ppm. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Au}_{2} \mathrm{~N}_{4} \mathrm{O}_{10}: \mathrm{C}, 31.5 ; \mathrm{H}, 2.0 ; \mathrm{N}, 6.1 ; \mathrm{Au}, 43.0 \%$. Found: C, 32.1; H, 2.3; N, 5.7; Au, 43.4\%.

Crystal data. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{Au}_{2} \mathrm{~N}_{4} \mathrm{O}_{12}, M_{\mathrm{r}}=1064.6$, orthorhombic, Pbca, $a=14.801(2) \AA, b=14.788(3) \AA$, $c=16.627(2) \AA, V=3639.4 \AA^{3}, Z=4, D_{\mathrm{x}}=1.943 \mathrm{Mg}$ $\mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \mu=8.2 \mathrm{~mm}^{-1}, F(000)$ $=2048, T=-130^{\circ} \mathrm{C}$.

Data collection and reduction. A colourless flattened pyramid ca. $0.45 \times 0.4 \times 0.2 \mathrm{~mm}^{3}$ was mounted in inert oil and transferred to the cold gas stream of the diffractometer (Siemens P4 with LT-2 low temperature attachment). A total of 3671 unique intensities were measured to $2 \theta=50^{\circ}$. Cell constants were refined from setting angles of 65 reflections to $2 \theta=25^{\circ}$. An absorption correction based on ψ-scans gave transmission factors 0.55-0.97.

Structure solution and refinement. The structure was solved by the heavy-atom method and refined on F^{2} using the program shelxi-93. The hydroxyl H atom was refined with DFIX; others were included with a riding model. The weighting scheme was $w^{-1}=\left[\sigma^{2}\left(F_{0}^{2}\right)+\right.$ $\left.(0.034 P)^{2}\right]$, with $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. The final $w R\left(F^{2}\right)$ for all reflections was 0.059 , with a conventional $R(F)$ of 0.026 for 2201 reflections with $I>2 \sigma I$, for 230 parameters; $S=0.88$, max. $\Delta / \sigma=0.001$, max. $\Delta \rho=$ $1.0 \mathrm{e}^{\AA} \AA^{-3}$. Final atomic coordinates are given in Table 1 , with selected bond lengths and angles in Table 2.

Full details of the structure determination have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, from where this material can be obtained on quoting the full literature citation and the reference number CSD 401615.

Acknowledgments

We thank Dirección General de Investigación Científica y Técnica (PB92-0982-C) and the Fonds der Chemischen Industrie for financial support. FJC is
grateful to Ministerio de Educación y Ciencia (Spain) for a grant.

References

[1] Schmidbaur, Gmelin Handbuch der Anorganischen Chemie, Organogold Compounds, Springer, Berlin, 1980; R. Usón and A. Laguna, Coord. Chem. Rev., 70 (1986) 1.
[2] S.J. Harris and R.S. Tobias, Inorg. Chem., 8 (1969) 2259.
[3] S. Komiya and J.K. Kochi, J. Am. Chem. Soc., 98 (1976) 7599.
[4] H. Schmidbaur and M. Bergfeld, Inorg. Chem., 5 (1966) 2069.
[5] (a) R. Usón, J. Vicente, J.A. Cirac and M.T. Chicote, J. Organomet. Chem., 198 (1980) 105; (b) R. Usón, A. Laguna, M. Laguna and M. Abad, J. Organomet. Chem., 249 (1983) 437; (c) J. Vicente, M.D. Bermúdez, M.P. Carrillo and P.G. Jones, J. Chem. Soc., Dalton Trans., (1992) 1975, and references cited therein.
[6] J. Vicente, M.D. Bermúdez, J. Escribano, M.P. Carrillo and P.G. Jones, J. Chem. Soc., Dalton Trans., (1990) 3083, and references cited therein.
[7] J. Vicente, M.T. Chicote, A. Arcas, M. Artigao and R. Jiménez, J. Organomet. Chem., 247 (1983) 123.
[8] J. Vicente, A. Arcas and M.T. Chicote, J. Organomet. Chem., 252 (1983) 257.
[9] T. Sone, M. Iwata, N. Kasuga and S. Komiya, Chem. Lett., (1991) 1949.
[10] M.G. Miles, G.E. Glass, R.S. Tobias, J. Am. Chem. Soc., 88 (1966) 5738.
[11] F.H. Brain and G.S. Gibson, J. Chem. Soc., (1939) 762.
[12] S. Komiya and J.K. Kochi, J. Am. Chem. Soc., 99 (1977) 3695.
[13] (a) E.H. Braye, W. Hübel and I. Caplier, J. Am. Chem. Soc., 83 (1961) 4406; (b) M. Peteau-Boisdenghien, J. Meunier-Piret and M. van Meerssche, Crys. Struct. Commun., 4 (1975) 375.
[14] J. Vicente, M.T. Chicote, I. Saura-Llamas and M.C. Lagunas, J. Chem. Soc. Chem. Commun., (1992) 915; J. Vicente, M.T. Chicote and M.D. Abrisqueta, J. Chem. Soc., Dalton Trans., (1995) 497.
[15] J. Vicente, M.T. Chicote, J. Martin, P.G. Jones, C. Fittschen and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., (1986) 2215.
[16] R.G. Pearson, Inorg. Chem., 12 (1973) 712; J. Dehand, J. Jordanov, M. Pfeffer and M. Zinsius, C.R. Acad. Sci., Ser. C, 281 (1975) 651; M. Pfeffer, D. Grandjean and G. Le Borgne, Inorg. Chem., 20 (1981) 4426; C. Arlen, M. Pfeffer, O. Bars and G. Le Borgne, J. Chem. Soc., Dalton Trans., (1986) 359.
[17] See, for example, J. Vicente, M.T. Chicote, M.C. Ramírez de Arellano and P.G. Jones, J. Chem. Soc. Dalton Trans., (1992) 1839.
[18] P.G. Jones, Gold Bull., 14 (1981) 159.
[19] C.E. Glass, J.H. Konnert, M.G. Miles, D. Britton and R.S. Tobias, J. Am. Chem. Soc., 90 (1968) 1131.
[20] P.G. Jones and G.M. Sheldrick, Acta Crystallogr., C40 (1984) 1776.
[21] H. Klassen and R. Hoppe, Nature, 63 (1976) 387.
[22] J. Vicente, A. Arcas, M.V. Borrachero, E. Molíns and C. Miravitlles, J. Organomet. Chem., 441 (1992) 487, and references cited therein.
[23] A.N. Nesmeyanov, Selected Works in Organic Chemistry, Pergamon, Oxford 1963.

[^0]: * Corresponding authors

